{ "cells": [ { "cell_type": "markdown", "id": "fec41b31", "metadata": {}, "source": [ "# Solution of Exercise 1" ] }, { "cell_type": "markdown", "id": "5563f345", "metadata": {}, "source": [ "## Signal in Time Domain" ] }, { "cell_type": "code", "execution_count": 11, "id": "9668fad2", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmbklEQVR4nO3deXhU53328e9P+74LJCSBEGB2DDaLbbzFTmzsOCbO8tZ26yROE8dt3CRvs7lJ06ZNmrdNlzTO5rjO0mZznXjfE+/BiTFg9l0IhBYQWtC+jEbzvH9IY2Ms0AhGOrPcn+vigpk5zNwDmluPnvOcc8w5h4iIRL8ErwOIiEh4qNBFRGKECl1EJEao0EVEYoQKXUQkRiR59cJFRUWusrLSq5cXEYlKmzZtanHOFY/2mGeFXllZycaNG716eRGRqGRmtad6TFMuIiIxQoUuIhIjVOgiIjFChS4iEiNU6CIiMWLMQjezH5vZMTPbcYrHzczuMrNqM9tmZueFP6aIiIwllBH6T4E1p3n8GmDOyK/bgB+cfSwRERmvMQvdOfcy0HaaTdYC/+OGvQrkmVlpuAKKTCbnHPdvrKPX5/c6isi4hWMOvQyoO+F2/ch9b2Nmt5nZRjPb2NzcHIaXFgmvHQ2dfOE323h4c6PXUUTGLRyFbqPcN+pVM5xz9zjnljvnlhcXj3rkqoin9jV1AbD/WJfHSUTGLxyFXg9UnHC7HNDwRqJSdXP38O/Huj1OIjJ+4Sj0R4EPjax2uQDocM4dCcPziky6YJEfUKFLFBrz5Fxm9ivgcqDIzOqBvweSAZxzdwNPAtcC1UAvcOtEhRWZaMEib+zop2fAT2aqZ+evExm3Mb9anXM3jfG4Az4ZtkQiHvH5A9S29XLO1Cz2NXVzoLmbJeV5XscSCZmOFBUZcai1h6GAY83CEkDz6BJ9VOgiI4IFfsX8qSQlmApdoo4KXWTE/qbhAj9nahaVRZnsV6FLlFGhi4yobu6mPD+djJQkZhdnaaWLRB0VusiI6mPdzJ6SBcDsKVnUtvXi8wc8TiUSOhW6CDAUcNQ0dzO7+M1CHwo4DrX2eJxMJHQqdBGg4XgfA/7AW0booJUuEl1U6CJAdfPwuVuCRV5VnDl8vwpdoogKXYQ3iztY6BkpSZTnp6vQJaqo0EUYXrJYlJVCXkbKG/fNnpKlpYsSVVToIgwvWQyOzoNmF2dR09zNUGDUs0GLRBwVusQ959xbliwGzZ6SxYA/QMPxPo+SiYyPCl3iXnPXAF39/jeWLAa9sdKlWRe7kOigQpe4t2/kkP85U7Pfcv+cKdlveVwk0qnQJe7tOdoJwNyStxZ6bkYyJTlp7D2qEbpEBxW6xL09R7soykqlKCv1bY/NK81m95FOD1KJjJ8KXeLe3qNdzDtpdB40tySbA83dDA7pnC4S+VToEteGAo59Tacu9PklOQwOOWqadU4XiXwqdIlrh1p7GPAH3jZ/HhS8PzjPLhLJVOgS14I7POeX5oz6+KziLJISjD3aMSpRQIUucW3PkU4SjLcdVBSUkpTArOIsrXSRqKBCl7i252gXM4sySUtOPOU280qz2aOVLhIFVOgS1/Yc7WJeyejTLUFzS7Jp7Oino29wklKJnBkVusStngE/h9t6T7nCJWj+SOFr2kUinQpd4tbepuGCPtUKl6Dg43u10kUinApd4tZYK1yCSnPTyElLYrdG6BLhVOgSt/Yc6SQzJZGyvPTTbmdmzCvJ0ZSLRDwVusStPUe7mFuSTUKCjbntvNJs9h7twjld7EIilwpd4pJzjr1NXcwdY4VL0NySbLoH/NTrYhcSwVToEpeaOgdo7x1kfunpd4gGBZc26ohRiWQqdIlLwVPijrUGPSi40mVXo1a6SOQKqdDNbI2Z7TWzajO7c5THc83sMTPbamY7zezW8EcVCZ8dDR0ALJgWWqFnpSZRVZTJzsaOiYwlclbGLHQzSwS+B1wDLABuMrMFJ232SWCXc+5c4HLg380sJcxZRcJmR2MHVUWZZKUmhfx3FpblslMjdIlgoYzQVwLVzrka55wPuA9Ye9I2Dsg2MwOygDbAH9akImG0o6GThWW54/o7i6bl0NDeR1uPb4JSiZydUAq9DKg74Xb9yH0n+i4wH2gEtgOfds697RIvZnabmW00s43Nzc1nGFnk7LT1+Gho72NxWWjTLUGLR74BBKdrRCJNKIU+2iLdkxfjXg1sAaYBS4HvmtnbPi3OuXucc8udc8uLi4vHGVUkPILz4IumjW+EvnBk+x2aR5cIFUqh1wMVJ9wuZ3gkfqJbgQfdsGrgIDAvPBFFwmtHw/A8+MJxFnpuRjIVBensbNA8ukSmUAp9AzDHzGaO7Oi8EXj0pG0OA1cCmNlUYC5QE86gIuGyo6GDioJ0cjOSx/13F03L1QhdItaYhe6c8wN3AM8Au4H7nXM7zex2M7t9ZLOvAReZ2XbgOeCLzrmWiQotcjZ2NHa8MR8+XovKcqlt7dW50SUihbRmyzn3JPDkSffdfcKfG4GrwhtNJPw6+gapbe3l/yyvGHvjUSwa+Uaws7GDi2YVhTOayFnTkaISV97YIXqGI/SFIwciaR5dIpEKXeJKsIgXhXiE6MmKslIpzU3TPLpEJBW6xJUdjR1My02jMCv1jJ9jUVmu1qJLRFKhS1zZ0dAx7iNET7ZoWi41LT10D+hgaIksKnSJG90DfmpaesZ9QNHJFpXl4NybZ2wUiRQqdIkbuxo7cW64kM9GcIfq9npNu0hkUaFL3Nha1w7AkvK8s3qeqTlpTM1JZWt9+1lnEgknFbrEjS117ZTnp1OcfeY7RIOWVeSzZeQbhEikUKFL3Nh8+DhLK/LC8lxLp+dR29pLa/dAWJ5PJBxU6BIXmjr7aezoZ9n0/LA837KRbwyadpFIokKXuLD5cDsAy6bnheX5FpfnkphgbzyvSCRQoUtc2FLXTnKisaD07Fa4BGWkJDF3arbm0SWiqNAlLmw+fJwF03JJS04M23Mum57HlsPtBAInX+9FxBsqdIl5/qEA2xs63pj3DpelFXl0DfipaekO6/OKnCkVusS8fU3d9PqGwjZ/HhTcwfq65tElQqjQJeYF57nDtWQxqKook+y0JM2jS8RQoUvM23z4OAWZKUwvyAjr8yYkGEsr8rTSRSKGCl1i3pa6dpZW5GFmYX/uZRV57D3aSa9PZ14U76nQJaZ19g9S3dwd9h2iQcum5xNwsE0n6pIIoEKXmLa1rh3nhg/Vnwjnjnyj0LSLRAIVusS0DYeOk2Dh3yEaVJCZQlVxJhsPtU3I84uMhwpdYtqGg20smJZDdlryhL3GysoCNhxq0wFG4jkVusQsnz/A5rrjrKgsmNDXWVFZQGe/n71NXRP6OiJjUaFLzNre0EH/YIBVMye20FeOPP8GTbuIx1ToErOCBbt8gkfo5fnplOam8dpBFbp4S4UuMWvDwTaqijMpyjr7KxSdjpmxorKA1w624Zzm0cU7KnSJSYGAY8OhtgmfbglaObOAY10DHG7rnZTXExmNCl1i0t6mLjr7/RO+QzQoOI++XtMu4iEVusSk4Hz2ZBX67OIs8jKS2aBCFw+p0CUmvXaojWm5aZTnp0/K6yUkjMyja6WLeEiFLjHHOceGg22smFkwISfkOpWVlQXUtvbS1Nk/aa8pcqKQCt3M1pjZXjOrNrM7T7HN5Wa2xcx2mtlL4Y0pErra1l6OdQ1M2nRL0IqReXQtXxSvjFnoZpYIfA+4BlgA3GRmC07aJg/4PnC9c24h8MHwRxUJTbBQJ2uFS9DCaTlkpCSy/mDrpL6uSFAoI/SVQLVzrsY55wPuA9aetM3NwIPOucMAzrlj4Y0pErpXDrRQnJ3K7ClZk/q6yYkJrJxZwB8OqNDFG6EUehlQd8Lt+pH7TnQOkG9mL5rZJjP70GhPZGa3mdlGM9vY3Nx8ZolFTsM5xyvVLayeVTip8+dBF88uoqa5h8b2vkl/bZFQCn20T8XJh8MlAecD7wauBr5iZue87S85d49zbrlzbnlxcfG4w4qMZW9TFy3dPlbPLvLk9YOv+0p1iyevL/EtlEKvBypOuF0ONI6yzdPOuR7nXAvwMnBueCKKhG7d/uEi9arQ507NpigrRYUungil0DcAc8xsppmlADcCj560zSPAJWaWZGYZwCpgd3ijioztleoWqoozmZY3OevPT5aQYFw0q4h11a06r4tMujEL3TnnB+4AnmG4pO93zu00s9vN7PaRbXYDTwPbgNeAe51zOyYutsjb+fwB1h9sY/Usb0bnQRfPLqKle4B9Td2e5pD4kxTKRs65J4EnT7rv7pNu/yvwr+GLJjI+W+vb6fUNeTbdErR6zpvz6HNLsj3NIvFFR4pKzFi3v4UEgwurCj3NUZaXzsyiTM2jy6RToUvMeKW6hcXleeRmTNz1Q0O1enYhr9a0MjgU8DqKxBEVusSErv5BNte1c/Fsb0fnQatnFdHjG2JrXbvXUSSOqNAlJrx2sI2hgPN8h2jQhbMKMYPf79e0i0weFbrEhBf3NpOenMh5M/K9jgJAXkYKS8rzeGmfjoiWyaNCl6jnnOP5PcdYPbuItOREr+O84Yq5U9ha305r94DXUSROqNAl6u0/1k1Dex9XzJvidZS3eMe8YpxDo3SZNCp0iXrP7xk+uec75kXW+YEWTculKCv1jXwiE02FLlHv+T3HmF+aQ2muN4f7n0pCgvGOucW8vK8Zv5YvyiRQoUtU6+gdZFPtca6IsNF50BXzptDZ72dT7XGvo0gcUKFLVHt5fzNDARdx8+dBF88pIjnReH6vpl1k4qnQJaq9sOcY+RnJLK2IjOWKJ8tOS2ZFZQEvaB5dJoEKXaLWUMDx4r5mLjunmMSEyb86UaiumDeFfU3d1B/v9TqKxDgVukStrfXttPX4eEeETrcEBfNplC4TTYUuUeu53U0kJhiXnROZO0SDqooymVGYwbO7VegysVToEpWcczy14yirZhaQl5HidZzTMjOuXljCHw600NE36HUciWEqdIlK+491U9PcwzWLSryOEpI1i0oYHHI8t7vJ6ygSw1ToEpWe2n4UM7h6YXQU+tLyPEpy0nhqx1Gvo0gMU6FLVHpqxxHOn57PlJw0r6OEJCHBWLOohJf3NdMz4Pc6jsQoFbpEnUMtPew52sWaKJluCVqzqIQBf4AXdJCRTBAVukSdp3cOT1tEW6GvqCygMDOFpzXtIhNEhS5R56kdR1lclkt5fobXUcYlMcG4auFUXthzjP7BIa/jSAxSoUtUaWzvY2tde9SNzoPWLCqlxzekS9PJhFChS1QJrhKJluWKJ7uwqpCctCSe2n7E6ygSg1ToElUe3dLA/NIcqoqzvI5yRlKSElizqIRndh6lz6dpFwkvFbpEjZrmbrbWd3DDsmleRzkr711aRo9viGd1kJGEmQpdosbDWxoxg+vPLfM6yllZVVVISU4aD29u8DqKxBgVukQF5xyPbGngolmFlORGx8FEp5KYYKxdOo2X9jXT1uPzOo7EEBW6RIXNde3Utvaydml0j86D1i4twx9wPLGt0esoEkNU6BIVHtncQOrIDsVYML80m7lTs3l4iwpdwiekQjezNWa218yqzezO02y3wsyGzOwD4Yso8W5wKMBj247wzvlTyUlL9jpOWJgZa5dNY1PtcQ636kpGEh5jFrqZJQLfA64BFgA3mdmCU2z3L8Az4Q4p8W3d/hbaeny8d1lsTLcEBaePHtminaMSHqGM0FcC1c65GuecD7gPWDvKdn8FPADozEMSVr/ZVE9eRnLEX5lovMry0lk1s4AHXq/HOed1HIkBoRR6GVB3wu36kfveYGZlwA3A3eGLJgKt3QP8dtdR3resnJSk2Nvl8ycrKjjU2ssfa1q9jiIxIJRPyGiXUz95OPGfwBedc6c99M3MbjOzjWa2sbm5OcSIEs8eeL2ewSHHTSsrvI4yIa5dXEpOWhK/eq1u7I1FxhBKodcDJ36ayoGTd80vB+4zs0PAB4Dvm9l7T34i59w9zrnlzrnlxcWx9eOzhJ9zjvteq2P5jHzmTM32Os6ESEtO5H3nlfPMjqNaky5nLZRC3wDMMbOZZpYC3Ag8euIGzrmZzrlK51wl8BvgL51zD4c7rMSX9QfbqGnp4caV072OMqFuXFmBbyjAg6/Xex1FotyYhe6c8wN3MLx6ZTdwv3Nup5ndbma3T3RAiV/3vXaY7LQk3r241OsoE2peSQ5LK/K4b0Oddo7KWUkKZSPn3JPAkyfdN+oOUOfcR84+lsS79l4fT+44yo0rKkhPSfQ6zoS7eeV0vvDANjbWHmdFZYHXcSRKxd6yAYkJD21uwOcPcOOK2J5uCbru3FKyUpP41frDXkeRKKZCl4gTCDj+54+1LK3IY8G0HK/jTIqMlCRuWFbG49uO0NI94HUciVIqdIk4L+47xsGWHj568Uyvo0yqD19UiW8owC81SpczpEKXiPOTVw5RkpMWtZeZO1Ozp2Rx+dxifvZqLQN+Xc1Ixk+FLhFlX1MXv9/fwocumkFyYvx9eX509UyauwZ4YpuuOSrjF3+fGIloP3nlIGnJCdwUJztDT3bJnCJmT8niR+sOagmjjJsKXSJGW4+PB19v4IZl5eRnpngdxxNmxq2rK9nZ2MmGQ8e9jiNRRoUuEeOX62sZ8Af46OpKr6N46n3LyslNT+bH6w56HUWijApdIkKfb4ifvHKIy84pjtnztoQqPSWRWy6YwTO7jlJ9rMvrOBJFVOgSEX712mFae3zcccVsr6NEhFtXV5KWlMj3XzzgdRSJIip08dyAf4gfvnyAVTMLdNj7iMKsVG5eNZ1HtjTqEnUSMhW6eO43m+pp6hzQ6Pwkt11aRaIZP3hJo3QJjQpdPDU4FOAHLx7g3Io8Lp5d5HWciDI1J40PLi/ngU31HOno8zqORAEVunjq0S2N1B/v4453zMZstItjxbfbL5vFkHPc83KN11EkCqjQxTODQwHuen4/80qyuXLeFK/jRKSKggxuWFbGL9cf1ihdxqRCF8/ct6GO2tZePn/1XBISNDo/lU9fOYeAc3z72f1eR5EIp0IXT/T6/Nz13H5WVOZzhUbnp1VRkMGfrprB/RvrqD7W7XUciWAqdPHET145RHPXAF9cM09z5yG444rZpCcn8u+/3et1FIlgKnSZdMd7fNz94gHeOX8Ky7XuPCRFWal87JIqntpxlK117V7HkQilQpdJ9/0Xq+n2+fn81fO8jhJVPn5pFYWZKfzzU3t0JkYZlQpdJtWB5m5++odDfOC8cuaWxPc5W8YrKzWJT105hz/WtPLMzqNex5EIpEKXSeOc4x8f20VaUiJfWKPR+Zn401XTmVeSzdce302fT1c1krdSocukeXb3MV7a18yn3zmH4uxUr+NEpaTEBL56/UIa2vu4W6cEkJOo0GVS9A8O8bXHdzFnShYfvqjS6zhR7YKqQq5bUsrdLx2grk0n7pI3qdBlUvzXyzUcbuvlq9cvjMtrhYbbl989nwQzvvb4Lq+jSATRJ0sm3IHmbr7zQjXXLi5htU7AFRaluen81ZWz+e2uJu0glTeo0GVCBQKOOx/YRnpyIl+9fqHXcWLKxy+pYkFpDn/78A46ege9jiMRQIUuE+pnr9ay4dBxvnLdAqZkp3kdJ6YkJybwzQ8soa3Hx9ef0NSLqNBlAtUf7+Vfnt7DpecU8/7zyryOE5MWleXyiUur+PWmel7e1+x1HPGYCl0mxPBUy3YM+MYNi3S+lgn0qSvnUFWcyd88uJ3Ofk29xDMVukyIH607yLrqFr787gWU52d4HSempSUn8m8fPJejnf387UM7dFqAOBZSoZvZGjPba2bVZnbnKI//qZltG/n1BzM7N/xRJVrsaOjgm8/s4eqFU7lpZYXXceLCedPz+cyVc3h0ayMPbW7wOo54ZMxCN7NE4HvANcAC4CYzW3DSZgeBy5xzS4CvAfeEO6hEh16fn0/9ajOFman88/uWaKplEv3lO2azsrKArzy8g9rWHq/jiAdCGaGvBKqdczXOOR9wH7D2xA2cc39wzh0fufkqUB7emBItvvroTg629vAff3Iu+ZkpXseJK4kJxrduXEpigvGpX23G5w94HUkmWSiFXgbUnXC7fuS+U/lz4KnRHjCz28xso5ltbG7WHvlY88v1h7l/Yz2fvHw2F83SAUReKMtL55sfWMLW+g7+4bGdXseRSRZKoY/2M/Ooe13M7B0MF/oXR3vcOXePc265c255cXFx6Ckl4m2qPc7fP7qDS88p5v++6xyv48S1NYtKuf2yWfxi/WHue+2w13FkEoVS6PXAiXu2yoHGkzcysyXAvcBa51xreOJJNDjW2c9f/HwTpbnp3DXyI7946/NXz+WSOUX83SM72Xz4+Nh/QWJCKIW+AZhjZjPNLAW4EXj0xA3MbDrwIHCLc25f+GNKpOofHOIvfvE6Xf1+fnjL+eRlaN48EiQmGHfduIwpOanc/vNNHOno8zqSTIIxC9055wfuAJ4BdgP3O+d2mtntZnb7yGZ/BxQC3zezLWa2ccISS8QIBByfvX8rm2qP828fPJf5pTleR5IT5GemcM8ty+nu93PrTzbQpYOOYp55dRDC8uXL3caN6v1o9vXHd3HvuoN86dp53HbpLK/jyCm8vK+Zj/50AxdUFfLjj6wgJUnHE0YzM9vknFs+2mP6n5Uz8pNXDnLvuoN8+MIZfPySKq/jyGlcek4x/+99i1lX3cKdD27TkaQxLMnrABJ97t9Yxz88tourFkzl796zUAcPRYEPLq+gsb2fbz27j5y0ZP7+PQv0/xaDVOgyLg9vbuCLD2zjkjlF3HXTMq1oiSKfunI2nf2D/GjdQVKTErjzmnkq9RijQpeQPbHtCH99/xYumFnIPbcsJy050etIMg5mxt++ez6DQwF++HINKUkJfPaquV7HkjBSoUtIHny9ns//ZhvnTc/n3g8vJz1FZR6NzIyvvmchPn+A7zxfjW8owJ1rNFKPFSp0GdNPXznIVx/bxUWzCrnnQ8vJTNWXTTRLSDC+ccNikhMT+OFLNXT0DvJPNyzW9FkM0CdTTsk5x7ef289/PrufqxZM5a6blmmaJUYkJBj/uHYheRnJfOf5arr6/fzHn5xLapL+f6OZCl1GNeAf4m8e3M6Drzfw/vPK+Zf3LyYpUatcY4mZ8dmr5pKbnszXn9hNU2c/P7zlfAqzUr2OJmdIn1B5m7YeH39273oefL2B//vOc/i3Dy5Rmcewj11SxXdvXsb2hg7e+/1X2NfU5XUkOUP6lMpb7GjoYO331rGtvoPv3LSMT79zjnaYxYHrlkzjfz9xIf2DAd7//T/wzM6jXkeSM6BCF2B4vvyX6w/zvh/8gUG/477bLuA9507zOpZMoqUVeTzyydXMLM7kEz/bxD89sYvBIV0kI5qo0IWu/kH++v6tfOmh7ayaWcATn7qYZdPzvY4lHpiWl86vb7+QWy6YwX/9/iA33fMqDe06U2O0UKHHufU1rVzz7d/zyJbh+fKf3rpSO8XiXGpSIl977yLuumkZu490suZbL/ObTfU6B0wUUKHHqT7fEP/0xC5u/K9XSUwwfn37hXz6nXO0FlnecP2503j6M5cyvzSHz/16K7f/fBPNXQNex5LT0Olz49BL+5r5ysM7ONzWy82rpvPla+frYCE5paGA497f1/Dvv91HWnICd14znxtXVJCgb/6eON3pc1XoceRIRx/feHIPj21tpKook6/fsEgXc5aQVR/r5ssPbWf9wTbOn5HPP65dyMJpuV7Hijsq9DjX6/Nz90s13PPyAQIO/vLyWfzF5bN0VKCMm3OOB15v4BtP7uZ4r48Pnl/O566ay5ScNK+jxY3TFbp+zo5hPn+A/91Yx3ef309T5wDXLSnli2vmUVGQ4XU0iVJmxgfOL+ddC6byvReq+ckrB3l82xH+/OKZfOySKnLTk72OGNc0Qo9BPn+AhzbXc9dz1TS093H+jHy+dO08zp9R4HU0iTG1rT188+m9PLH9CNlpSXz8kio+srqSnDQV+0TRlEuc6B7wc99rh/nRuoMc6ejn3PJc/vqquVw6p0hHe8qE2tnYwbd+t59ndzeRnZrEzRdM56OrZzJVUzFhp0KPcYdaevj5q7Xcv7GOzn4/F1QV8InLZnH5OcUqcplUOxo6uPulAzy5/QiJCcZ7lkzjlgtnsLQiT1+LYaJCj0E+f4Dn9zTxq9fqeGlfM0kJxtULS/jYJTN1lKd47nBrL/euq+GBTfX0+IZYXJbLzaumc92SUrI1HXNWVOgxwjnH9oYOHtrcwCNbGmnr8TElO5WbVk7n5lXT9eOtRJyu/kEe3tzAz16tZV9TN2nJCVyzqJT3nVfGhVWFOovnGVChRzHnHDsbO3l6x1Ee29ZIbWsvKYkJvGvBVD5wfjmXzCnSh0IinnOOLXXt/HpTPY9tbaSr309hZgrXLC7h2sWlrKws0NdxiFToUaZ/cIj1B9t4fncTz+4+RkN7H4kJxkWzCnnPkmlcvbCE3Az92CrRqX9wiBf3NvPYtkae291E/2CA3PRkrpw3hSvmT+Hi2UXkZaR4HTNiqdAj3FDAsauxkz/WtLCuupX1Na0M+AOkJSdwyZxi3rVgKlfOm6KTZknM6fX5eXlfC7/b1cRze5po7x0kwYZP5XvxnGIurCpk2fQ8XfrwBCr0CNPnG2JrfTubao+zqfY4Gw610dXvB2BWcSaXnTOFS88pYtXMQtJT9IUs8cE/FGBrfQcv7WvmpX3NbK9vJ+AgJSmBZRV5LK/M5/wZ+Zw3PT+uR/AqdA/1DPjZc7SLXUc62VHfwdb6dvY1dREY+WefPSWLFZX5XFBVyAVVhdqxKTKio2+QDQfb+GNNKxsOtbGzsZOhkQ/OjMIMlpTnsaQsl4XTcphfmkN+ZnyUvAp9EvQM+DnY0sOB5m6qj3Wz92gX+491c6i1h+A/cV5GMkvK81hansu5FXmcNz0/br4IRc5Wr8/P1roONtcdZ1vd8ODoSEf/G4+X5qYxZ2o2c6dmMWdqNrOKM6kqyoq5z5jO5RIGQwFHc9cADe291LX1UX+8l9rWXmrbeqlt7aGp883zRCcmGJWFGcwvzWbt0mksnJbLgmk5TMtN08EVImcoIyWJC2cVcuGswjfua+keYPeRTnY1drLnaBf7mrr475pWfP43L52Xn5HMjMJMZhRmMKMgg/KCDMrz06nIz2BqThopSbGzuibuR+j+oQBtvT5au300dw3Q0j1Ac9cATZ0DNHX109TRz5GOfpo6+/EH3vpvVZydSmVhBjMKM5lZlElVUSZVxVlUFmXoTIYiHhkKOOraeqlp6aamuYcDzT0cbuvhUEsvjR19nFh5ZlCclUppXjpTs1MpyU1jak4axVmpFGenUpSVSmFWCgWZKRGzY/asR+hmtgb4NpAI3Ouc++eTHreRx68FeoGPOOdeP6vUIXLOMeAP0DPgp2dgiM7+QboH/HT1++nsG6Szf5DOPj/tfT46+gbp6B2krddHe+8gx0d+H01GSiIlOWlMyUll1cwCSvPSKM1Npyw/nYr8dMryMrTDUiQCJSYYlUWZVBZlcsW8tz7m8wc42tFP/fFe6o/30djRx5H2fho7+qht7WX9wTY6+kbvhKzUJPIzkynISCEvI4W8jGTy0pPJTU8mJ/grLZmctCSy0pLITksmMzWRrNQk0pMTJ+Wn8zEL3cwSge8B7wLqgQ1m9qhzbtcJm10DzBn5tQr4wcjvYffC3mN8/fFd9PqG6Bnw0+sbetvIeTTZqUnkjPzjF2SmUJaXTn5GCoVZKRRmplCQOfwdOfgrS1fwEYk5KUkJTC/MYHrhqU8h3T84RHPXAM0jP6239fho7R6gpdtHe6+P4yODwUOtPbT3Dg8ax5roSDDITEkiIzWRzJQkbl41nY9dUhXmdxfaCH0lUO2cqwEws/uAtcCJhb4W+B83PH/zqpnlmVmpc+5IuAPnpiczrzSHzJREMlKSyEhJJDM1iazUJDJTk8hOSyI7dfi7Y056EjlpyWSnJekoNBEJSVpyIhUFGSFfN2Ao4OgeeHNGoKvfT3e/n66BQboHhkZmD4ZnEHp9fnp8QxRN0DEloRR6GVB3wu163j76Hm2bMuAthW5mtwG3AUyfPn28WQE4b3o+592sk0+JSGRITDByR37691oow9bRJn5O/gEjlG1wzt3jnFvunFteXFwcSj4REQlRKIVeD1SccLscaDyDbUREZAKFUugbgDlmNtPMUoAbgUdP2uZR4EM27AKgYyLmz0VE5NTGnEN3zvnN7A7gGYaXLf7YObfTzG4fefxu4EmGlyxWM7xs8daJiywiIqMJaW2ec+5Jhkv7xPvuPuHPDvhkeKOJiMh4aC2fiEiMUKGLiMQIFbqISIzw7ORcZtYM1Hry4menCGjxOsQk03uOffH2fiF63/MM59yoB/J4VujRysw2nupMZ7FK7zn2xdv7hdh8z5pyERGJESp0EZEYoUIfv3u8DuABvefYF2/vF2LwPWsOXUQkRmiELiISI1ToIiIxQoV+Fszsc2bmzKzI6ywTycz+1cz2mNk2M3vIzPK8zjRRzGyNme01s2ozu9PrPBPNzCrM7AUz221mO83s015nmixmlmhmm83sca+zhIsK/QyZWQXD11k97HWWSfA7YJFzbgmwD/gbj/NMiBOun3sNsAC4ycwWeJtqwvmBzzrn5gMXAJ+Mg/cc9Glgt9chwkmFfua+BXyBUa7MFGucc791zvlHbr7K8AVMYtEb1891zvmA4PVzY5Zz7ohz7vWRP3cxXHBl3qaaeGZWDrwbuNfrLOGkQj8DZnY90OCc2+p1Fg98FHjK6xAT5FTXxo0LZlYJLAPWexxlMvwnwwOygMc5wiqk86HHIzN7FigZ5aEvA18CrprcRBPrdO/XOffIyDZfZvhH9F9MZrZJFNK1cWORmWUBDwCfcc51ep1nIpnZdcAx59wmM7vc4zhhpUI/BefcO0e738wWAzOBrWYGw9MPr5vZSufc0UmMGFaner9BZvZh4DrgShe7By/E5bVxzSyZ4TL/hXPuQa/zTILVwPVmdi2QBuSY2c+dc3/mca6zpgOLzpKZHQKWO+ei8axtITGzNcB/AJc555q9zjNRzCyJ4Z2+VwINDF9P92bn3E5Pg00gGx6V/DfQ5pz7jMdxJt3ICP1zzrnrPI4SFppDl1B8F8gGfmdmW8zs7rH+QjQa2fEbvH7ubuD+WC7zEauBW4ArRv5vt4yMXCUKaYQuIhIjNEIXEYkRKnQRkRihQhcRiREqdBGRGKFCFxGJESp0EZEYoUIXEYkR/x9j9ToUPO7yGgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# import libs\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# define vars\n", "alpha = 1\n", "t = np.linspace(-5/alpha, 5/alpha, 101)\n", "\n", "# compute time domain signal\n", "def x_time(time_arr, alpha_var):\n", " ans_arr = np.zeros(len(time_arr))\n", " for i in range(len(time_arr)):\n", " ans_arr[i] = np.exp(-alpha_var*np.abs(time_arr[i]))\n", " return ans_arr\n", "\n", "# plot signal\n", "fig_time = plt.figure()\n", "ax_time = fig_time.add_subplot(1, 1, 1)\n", "ax_time.plot(t, x_time(t, alpha));" ] }, { "cell_type": "markdown", "id": "3d38f7fa", "metadata": {}, "source": [ "## Fourier Transform of Signal" ] }, { "cell_type": "code", "execution_count": 17, "id": "461828b1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjGklEQVR4nO3df5Rb5X3n8fdX0kjj+WVsZmyMsbETnBQnwZROHfIbuklqCMSbPc1Zs9m0zYb1oQd22+5ut3STDe3mdE+67clu29D6+KSU9GwC7WmgMY0TSLNtyY8SMMQGg3GYGoKNHTy2sWc0P6SR9N0/dO9YFprRnRnNSHfm8zpHR1fPc6/0XFvz1VePnvs85u6IiMjilWh2A0REZH4p0IuILHIK9CIii5wCvYjIIqdALyKyyKWa3YBaent7fcOGDc1uhohIbDz55JOn3L2vVl1LBvoNGzawb9++ZjdDRCQ2zOzHU9Wp60ZEZJFToBcRWeQU6EVEFjkFehGRRU6BXkRkkasb6M1snZn9vZkdMrNnzexXa+xjZvZHZjZgZk+b2TUVddvM7HBQd2ejT0BERKYXJaMvAP/Z3a8ErgVuN7PNVfvcAGwKbjuBPwUwsyRwd1C/GbilxrEiIjKP6gZ6dz/h7k8F28PAIWBt1W7bgb/wsseAi8xsDbAVGHD3I+6eB+4P9hWJnR++/BoHXznX7GaIzNiM+ujNbAPw08APqqrWAkcrHh8LyqYqr/XcO81sn5ntGxwcnEmzRBbE7zz0HJ/7xvPNbobIjEUO9GbWBXwV+DV3H6qurnGIT1P++kL33e7e7+79fX01r+IVaaqhsQmGxiea3QyRGYs0BYKZtVEO8l929wdq7HIMWFfx+DLgOJCeolwkdrK5QrObIDIrUUbdGPBnwCF3//wUu+0BfjEYfXMtcM7dTwBPAJvMbKOZpYEdwb4isZPNFRTsJZaiZPTvAj4OPGNm+4Oy/wasB3D3XcBe4EZgABgFPhHUFczsDuBhIAnc4+7PNvIERBZCseSM5ovNbobIrNQN9O7+XWr3tVfu48DtU9TtpfxBIBJbYSY/mi9SLDnJxLR/EiItRVfGikRQ2WWj7huJGwV6kQiy4wr0El8K9CIRZHPnh1VWBn2ROFCgF4lg+IKMXmPpJV4U6EUiqOyuGVZGLzGjQC8SgfroJc4U6EUiuGDUjTJ6iRkFepEINLxS4kyBXiSC7HiB9rbyn4v66CVuIk1qJrLUZXMFetrbSJrmu5H4UaAXiWA4V6CrPYUZjCjQS8wo0ItEkB0v0J1JYZSDvkicKNCLRJANMnrMNOpGYkeBXiSC7HiB3q4ODFMfvcSOAr1IBNlcga5MG4YxOJxrdnNEZkSBXiSC4fEJuoMfY5XRS9zUDfRmdg9wE3DS3d9ao/43gI9VPN+VQJ+7nzGzl4BhoAgU3L2/UQ0XWSjuHmT05T+XYS0QLjET5YKpe4FtU1W6+++7+9XufjXwW8A/uvuZil2uD+oV5CWWxiaKlBy62lN0t6fI5gqUF1UTiYe6gd7dHwXO1NsvcAtw35xaJNJiwq6arkyKrkyKkpeDv0hcNGwKBDProJz5f7Wi2IFHzOxJM9tZ5/idZrbPzPYNDg42qlkicxYOp+xuT9EZdN9oiKXESSPnurkZ+F5Vt8273P0a4AbgdjN771QHu/tud+939/6+vr4GNktkbioz+u72oJ9eP8hKjDQy0O+gqtvG3Y8H9yeBB4GtDXw9kQURZu9h101lmUgcNCTQm9ly4H3A1yrKOs2sO9wGPggcbMTriSykMHvvrAz0yuglRqIMr7wPuA7oNbNjwF1AG4C77wp2+wjwiLuPVBy6GnjQzMLX+Yq7f7NxTRdZGJV99OW3s6YqlnipG+jd/ZYI+9xLeRhmZdkRYMtsGybSKir76I1ypNcMlhInujJWpI7JQN+eIviGqq4biRUFepE6hscLpJMJMqnkZJkCvcSJlhIUqSObmyhPUQxkUknSqYT66CVWFOhF6siOn5/nBqA7kyKb03w3Eh8K9CJ1ZHPFCwJ9ZyalcfQSKwr0InVUdt1AefSN+uglThToRerI5srrxYa62lPqo5dYUaAXqSM7Xrggo+9WRi8xo0AvUkfloiNQzugV6CVOFOhF6hiuyui79GOsxIwCvcg08oUSuULp9X30yuglRhToRaYxUjFzZag7kwo+ALTKlMSDAr3INConNAuF2yM5BXqJBwV6kWkMV0xRHOpqbwM0g6XEhwK9yDTOZ/Rtk2VdmfLkZhpLL3GhQC8yjZGKKYpDYdDXEEuJi7qB3szuMbOTZlZzGUAzu87MzpnZ/uD2mYq6bWZ22MwGzOzORjZcZCEM1+qjbw+XE9TEZhIPUTL6e4Ftdfb5jrtfHdz+B4CZJYG7gRuAzcAtZrZ5Lo0VWWjZWn30QdBX143ERd1A7+6PAmdm8dxbgQF3P+LueeB+YPssnkekacKs/YJpitu1QLjES6P66N9hZgfM7Btm9pagbC1wtGKfY0FZTWa208z2mdm+wcHBBjVLZG6y4wXMoCN9fnWpMOjr6liJi0YE+qeAy919C/DHwN8E5VZjX5/qSdx9t7v3u3t/X19fA5olMnfDwTw34VqxUA76ZsroJT7mHOjdfcjds8H2XqDNzHopZ/DrKna9DDg+19cTWUjZ8QunKAYwM7oymqpY4mPOgd7MLrEg3TGzrcFzngaeADaZ2UYzSwM7gD1zfT2RhZTNXTihWUhTFUucvP4dXMXM7gOuA3rN7BhwF9AG4O67gF8AfsXMCsAYsMPdHSiY2R3Aw0ASuMfdn52XsxCZJ9VTFIe62jWDpcRH3UDv7rfUqf8C8IUp6vYCe2fXNJHmGx4vXDC0MtSpjF5iRFfGikxjZKqMPqOpiiU+FOhFpjGaL14wRXGoM51iLK9AL/GgQC8yjZF8gc6KMfShjkxS0xRLbCjQi0xjNFekY4qMflQZvcSEAr3IFPKFEvliaeqMPq+MXuJBgV5kCmNBIO9I187o84USE8XSQjdLZMYU6EWmMJIP14utkdEHWf6osnqJAQV6kSmEffA1M/qg31799BIHCvQiUwhH1UyX0WvkjcSBAr3IFEamy+jTyuglPhToRaYwGmb0NQJ9R0YZvcSHAr3IFCYz+hpdN8roJU4U6EWmcH54pUbdSLwp0ItMYWSacfQdGnUjMaJALzKF0Vz4Y2ytrhv10Ut81A30ZnaPmZ00s4NT1H/MzJ4Obt83sy0VdS+Z2TNmtt/M9jWy4SLzbSRfJJ1K0JZ8/Z9Jh/roJUaiZPT3AtumqX8ReJ+7XwV8FthdVX+9u1/t7v2za6JIc4xOMXMlEHwAmOa7kViIssLUo2a2YZr671c8fIzyIuAisTeSK9bsnw91pFOT3TsirazRffSfBL5R8diBR8zsSTPbOd2BZrbTzPaZ2b7BwcEGN0tk5kbzhZpXxYY605rBUuKhbkYflZldTznQv7ui+F3uftzMVgHfMrPn3f3RWse7+26Cbp/+/n5vVLtEZmskXyejz2hOeomHhmT0ZnYV8EVgu7ufDsvd/XhwfxJ4ENjaiNcTWQijuQgZvUbdSAzMOdCb2XrgAeDj7v6jivJOM+sOt4EPAjVH7oi0oroZvVaZkpio23VjZvcB1wG9ZnYMuAtoA3D3XcBngIuBPzEzgEIwwmY18GBQlgK+4u7fnIdzEJkX0426gfKslsfPTixgi0RmJ8qom1vq1N8K3Fqj/Aiw5fVHiMTDyBTrxYaU0Utc6MpYkSlEyeg16kbiQIFepIZSyRmN0kevcfQSAwr0IjWMTUy9ulSoM51kdKJIqaTRwNLaFOhFaphudalQRyaFO4wX1H0jrU2BXqSG0WnWiw1pBkuJCwV6kRoiZfSawVJiQoFepIZw5aha68WGOrVurMSEAr1IDSO5qdeLDSmjl7hQoBepYUYZvcbSS4tToBepYWSaZQRDkxm9xtJLi1OgF6lhdHJh8OkCvTJ6iQcFepEawlE3nXXmugH10UvrU6AXqWE0VyRhkElN/SeiUTcSFwr0IjWM5At0plME02zX1J5KYqaMXlqfAr1IDWP54rRDKwESCaOjLTnZny/SqhToRWoYyRenHVoZ0rqxEgd1A72Z3WNmJ82s5jKAVvZHZjZgZk+b2TUVddvM7HBQd2cjGy4yn0ZzhboZPWjdWImHKBn9vcC2aepvADYFt53AnwKYWRK4O6jfDNxiZpvn0liRhTKSL0w7z01Iq0xJHNQN9O7+KHBmml22A3/hZY8BF5nZGmArMODuR9w9D9wf7CvS8kbzxWlXlwp1ZpTRS+trRB/9WuBoxeNjQdlU5TWZ2U4z22dm+wYHBxvQLJHZG8kVpl0vNqSMXuKgEYG+1vgzn6a8Jnff7e797t7f19fXgGaJzN6MMnqNupEWVz9lqe8YsK7i8WXAcSA9RblIyxvJzaCPXnPdSItrREa/B/jFYPTNtcA5dz8BPAFsMrONZpYGdgT7irQ09/LC4NOtLhXqTCujl9ZXN2Uxs/uA64BeMzsG3AW0Abj7LmAvcCMwAIwCnwjqCmZ2B/AwkATucfdn5+EcRBoqXyxRKHm0jF7j6CUG6r6T3f2WOvUO3D5F3V7KHwQisTG5XmyUPvp0komiky+USE8zL45IM+mdKVJlcr3YiKNuQPPdSGtToBepEmV1qZBWmZI4UKAXqRJlvdiQVpmSOFCgF6mijF4WGwV6kSpR1osNKaOXOFCgF6kymdFH+DE2zPqV0UsrU6AXqTK5XmyUjD7outGoG2llCvQiVcJx9Msidd1o3VhpfQr0IlUmx9FHnOsGlNFLa1OgF6kymi/S3pYgmZh6YfCQMnqJAwV6kSojuUKkoZUAbckE6VRCGb20NAV6kSqj+WKki6VC5RksFeildSnQi1SZSUYP4Zz06rqR1qVAL1JlNF+MdLFUqLzKlDJ6aV0K9CJVRvOFSBdLhcrrxiqjl9alQC9SZTYZvQK9tLJIgd7MtpnZYTMbMLM7a9T/hpntD24HzaxoZiuDupfM7Jmgbl+jT0Ck0YbHZ5bRd6ZTDI1NzGOLROambqA3syRwN3ADsBm4xcw2V+7j7r/v7le7+9XAbwH/6O5nKna5Pqjvb1zTRRrP3RnM5ujrykQ+prc7w+mR/Dy2SmRuomT0W4EBdz/i7nngfmD7NPvfAtzXiMaJLLThXIF8oUTvTAJ9V4bXRvNMFEvz2DKR2YsS6NcCRyseHwvKXsfMOoBtwFcrih14xMyeNLOdU72Ime00s31mtm9wcDBCs0Qab3A4B0Bfd/RA39edwR3OKKuXFhUl0Ne6Dtyn2Pdm4HtV3TbvcvdrKHf93G5m7611oLvvdvd+d+/v6+uL0CyRxjsVBPqZZPR9XWng/IeESKuJEuiPAesqHl8GHJ9i3x1Uddu4+/Hg/iTwIOWuIJGWNJidXUZfeaxIq4kS6J8ANpnZRjNLUw7me6p3MrPlwPuAr1WUdZpZd7gNfBA42IiGi8yH8xl9OvIxYfZ/Shm9tKi6Y8jcvWBmdwAPA0ngHnd/1sxuC+p3Bbt+BHjE3UcqDl8NPGhm4Wt9xd2/2cgTEGmkU9k8yYSxomMWgT6rPnppTZEGC7v7XmBvVdmuqsf3AvdWlR0BtsyphSILaHA4x8WdaRIRpigOdWZSdKST6qOXlqUrY0UqnMrmZvRDbKi3K8Mp9dFLi1KgF6kwmM3N6IfYUF93Rhm9tCwFepEKp4Znm9GnldFLy1KgFwm4O6ey+dln9Ar00qIU6EUCQ2MF8sXSjIZWhnq7MpwdndA0CNKSFOhFArO5WCoUHnNaQyylBSnQiwQm57mZ5aibyucQaSUK9CKB8MfU3llk9OcvmlKgl9ajQC8SmEtGv6pbGb20LgV6kcCpbI5Uwli+rG3Gx0523SijlxakQC8SGAzG0M9k+oPQsnSSrkxKGb20JAV6kcCpbI7e7pkPrQzpoilpVQr0IoFT2fys+udDfd2a70ZakwK9SGBwltMfhHq7NN+NtCYFehGgVHJOj8xuQrNQOaPXBVPSeiIFejPbZmaHzWzAzO6sUX+dmZ0zs/3B7TNRjxVpBefGJpgo+pwz+nNjE+QKxQa2TGTu6i48YmZJ4G7gA5TXj33CzPa4+3NVu37H3W+a5bEiTTWXi6VC4YfE6WyeSy9a1pB2iTRClIx+KzDg7kfcPQ/cD2yP+PxzOVZkwczlYqlQny6akhYVJdCvBY5WPD4WlFV7h5kdMLNvmNlbZnisSFOdn9BsbsMrQdMgSOuJsmZsratHvOrxU8Dl7p41sxuBvwE2RTy2/CJmO4GdAOvXr4/QLJHGCX9E7etqn/VzhBm9Ar20migZ/TFgXcXjy4DjlTu4+5C7Z4PtvUCbmfVGObbiOXa7e7+79/f19c3gFETmbnA4RzqZoGdZlNynNs1gKa0qSqB/AthkZhvNLA3sAPZU7mBml5iZBdtbg+c9HeVYkVZQXhQ8TfA2npX2tiTd7SkNsZSWUzd9cfeCmd0BPAwkgXvc/Vkzuy2o3wX8AvArZlYAxoAd7u5AzWPn6VxEZm1wODenETehPl00JS0o0vfUoDtmb1XZrortLwBfiHqsSKs5lc2xumf2/fOh3i6tHSutR1fGigCvDuXmNLQy1Ned4dWh8Qa0SKRxFOhlyTszkudUNscVq7rm/FxvXNXF0TOjjOV1day0DgV6WfIOnRgC4Mo1PXN+rs1ruik5HH51eM7PJdIoCvSy5D13PAz03XN+rs1rlgPnPzxEWoECvSx5h04Msbonw8UN6KO/bMUyujKpyQ8PkVagQC9L3nMnhtjcgG4bgETCuHJNtzJ6aSkK9LKk5QpFBk5mG9I/H7pyTQ+HTgxRKtWc7UNkwSnQy5I2cDJLoeRsvrRxgX7zmh5G8kWOvjbasOcUmQsFelnSzv8Q28BAH3xoqJ9eWoUCvSxph04M096WYMPFnQ17zjet7iZhGnkjrUOBXpa0506c46cu6SGZmP1kZtXa25K8sa+L505oLL20BgV6WbLcnUMnhhvabRMKf5AVaQUK9LJkHT83zrmxiYb+EBvafGkPr5wd49zoRMOfW2SmFOhlyToU/Fi6uQFXxFYLvyU8p6xeWoACvSxZz50YwgzefMk8ZPRBoFf3jbQCBXpZsg6dGOLylR10ZWa/fOBU+roz9HZlFOilJUQK9Ga2zcwOm9mAmd1Zo/5jZvZ0cPu+mW2pqHvJzJ4xs/1mtq+RjReZi+dODM1L/3xo86U9PKux9NIC6gZ6M0sCdwM3AJuBW8xsc9VuLwLvc/ergM8Cu6vqr3f3q929vwFtFpmzF0+N8OPTo1yzfsW8vcbPrF/BoZ8McVILkUiTRcnotwID7n7E3fPA/cD2yh3c/fvu/lrw8DHgssY2U6SxHjpwHDO46apL5+01PnTVGtzhb58+MW+vIRJFlEC/Fjha8fhYUDaVTwLfqHjswCNm9qSZ7ZzqIDPbaWb7zGzf4OBghGaJzI67s+fAcX52w0ouWT73dWKncsWqLjav6eGhp4/P22uIRBEl0Ne6ZLDmtHxmdj3lQP+bFcXvcvdrKHf93G5m7611rLvvdvd+d+/v6+uL0CyR2Tn86jADJ7PcvGX+svnQzVsu5Ycvn+XoGU1wJs0TJdAfA9ZVPL4MeF2KYmZXAV8Etrv76bDc3Y8H9yeBByl3BYk0zUMHjpNMGDe89ZJ5f62brloDqPtGmitKoH8C2GRmG80sDewA9lTuYGbrgQeAj7v7jyrKO82sO9wGPggcbFTjRWbK3XnowAne+caL6W3AilL1rFvZwU+vv4iHDqj7RpqnbqB39wJwB/AwcAj4K3d/1sxuM7Pbgt0+A1wM/EnVMMrVwHfN7ADwOPB1d/9mw89CJKIDx87x8pnRBem2Cd181aU8d2KIgZPZBXtNkUqRrhRx973A3qqyXRXbtwK31jjuCLClulykWR46cJx0MsHPv2X+u21CH7pqDZ/9+nM8dOA4v/6BNy3Y64qEdGWsLBm5QpG/ffo473tzH8uXtS3Y667uaefajRfztf2vUNTygtIECvSyZPz5917i1aEcH7/28gV/7Y+/43JeOj3KfY+/vOCvLaJAL0vCyaFx/vjbL/D+K1fx3jct/PDdG956CW/fuJI/eOQwZ0fzC/76srQp0MuS8LlvPs9E0fn0h6pn71gYZsZvf/gtDI1N8Plv/aj+ASINpEAvi96TP36NB556hVvfs5ENvY1bG3amrlzTw7+99nL+72M/1qyWsqAU6GVRyxdK/PaeZ1ndk+H2669odnP4Tx94Ez3L2rjra89SKJaa3RxZIhToZdEqlpxf/8v9PPPKOX775rfQOQ/zzs/URR1pPnXjlTz+0hnufOAZShqFIwug+e98kXng7nz6b57h68+c4NMfupIb3ram2U2a9NH+dRx7bYw//PYLLF/Wxqc/dCVmtaaUEmkMBXpZdNydz33zee57/Ci3X/9Gbn3PG5rdpNf5tfdv4uxonj/77ossX9bGf/i5KxTsZd4o0MuicmYkz3/96wP83aGTfOzt6/kvH3xzs5tUk5lx181vYWi8wOe/9SMOvzrM//zI2xb0Qi5ZOhToZdH43sApfv0v93N2dIL/ftNmPvHODS2dJScSxh98dAtXrOri89/6EftfPsv/2XE1P7thZbObJouMfoyV2Dv4yjlu/dI+PvbFH9DdnuLB29/JJ9+9kUSidYN8KJkwbr/+Cv76tneQTBgf3fVP3P7lpzj8k+FmN00WEXNvvV/9+/v7fd8+rSMuUysUS3znhVN8+Qcv83eHXqWnPcWt73kD//49b2BZOtns5s3K8PgEux89wp9/7yVG8gVueOsl7PjZ9bzril6SMfjQkuYysyenWpdbgV5iY3yiyBMvneHbh07yt08f51Q2z4qONn75nRv5xLs30NO+OPq3Xxsp/0j7pX96ieHxAqt7Mnx4y6Vc/1Or+JnLV5BJxfODTOaXAr3E0qlsjqePnWX/0XP88OXXePzFM+QKJdLJBD/3U6v4V9es5bo3ryKdWpw9kOMTRf7f8yd54Klj/MPhQQolZ1lbkq0bV3LN+hVctW45Wy67iJWd6WY3VVrAdIFeP8ZK07g7Z0cnOH5ujKNnxjj22igvnR5h4GSWgZNZTmXLk38lDN60upt/8/b1vHdTH29/w0o60ov/rdveluTGt63hxretYXh8gseOnOG7Lwzy/X8+zaMvDBLmaH3dGTat6uKKVV1cfnEn61YsY93KDtYsb2f5sraW/kFaFkakjN7MtgF/CCSBL7r756rqLai/ERgFftndn4pybC3K6OPF3ckVSmRzBUZyBYbHCwyNTzA8XuDc2ATnRic4O5bnzMgEp7M5To/kGRzO8erQOLnChdMAdLen2LSqi02rutm0uou3rV3OW9cub4mrWlvJ8PgEz7xyjoOvnOOFV7O8EHw4ZnOFC/Zrb0uwuqedvq4MF3elubgrw4qONlZ0pFm+rI3ly9robm+juz1Fd3uKzkyKrkyKTCqhD4iYmVNGb2ZJ4G7gA5QXCn/CzPa4+3MVu90AbApubwf+FHh7xGOXDHen5OfvS+54cF+qUVcqnd8ulsr7FoPtsKxyu+ROoeiT+xRKTrFYvi+USuWyYnk7X3QKxRKFopMP7ieKJfLFEvnC+ftcoURuoli+LxQZnygxPlFkbKLIaL7IWL7IaL5AvSv5kwnjomVt9HZl6O1Oc/W6i7hkeTure9pZs7yddSs6WLdymTLQiLrb23jnG3t55xt7J8vCb0gvnxnl6Guj/OTcOK8OjfOToRynhnO8eGqEJ156jbOj+Uj/Xx1tSZalk3Skk7S3hbcEmVT5Pp1KkkklyKQSpFMJ0skEbcEtlTTSwX25zEglyo9TiQTJhJFKGMlkcJ8IyyFh5e1EotyOpBmJhJGwcLu8T6J628pDVo3zZWacrwseL8X3V5Q0aSswECwLiJndD2wHKoP1duAvvPz14DEzu8jM1gAbIhzbMDf98XcYyxdxgOCN7JT/AM5vg1MOmtVfZtz99fuEjyfr/MIyP/8aparndi4M6K0umTDagj/Q8I84HfwhZ9rKj3uWtbG6J0N7W5JlFYGgI13OBMOMsGdZip72csZ4UUcbXZnUkvwDW0hmxorONCs602xZd9GU+5VKTjZf4OzIBEPjwW1sgmyuyEiuQDZXYDRfYDRfZDRXZLxQ/kAfCz7wz47mGZ+oTAaKk8nBRNFjsYpW5QeAEX4ABB8GlP8tLdjPwg+IC8oryyqegws/SMLnhQv3oeK5gkoMuLgzw1/d9o6Gn2+UQL8WOFrx+BjlrL3ePmsjHguAme0EdgKsX78+QrNeb9OqbvKF0uQ/WvgPHv5nnN8O/oGD/yBeV3/hfz4Eb4ga/6GVZQnjgjdCeEw5k6jMNILyIEsxykHWKrbD57pguyKDCTMds/MZUSJxfjvMmMLMqC2ZmKwLM662RIK2VLm8LZnQEL4lIpEwetrb5m2UUrFU/nY4EX5TLJU/AArFUvlbZlBfKsFE8E0zvBVK5W+yk9sV31bL2+UPKqe8XQyyqpIzuV/4Ldk5/824XHa+3L1y3wsTuZJXJ4SvTwBLQTbp1fsG/wZhWXXCeWF9uO2TyWl3+/x0UUZ51lp//dUf2VPtE+XYcqH7bmA3lPvoI7Trdf73v756NoeJSAOVE41yV4+0hiiB/hiwruLxZcDxiPukIxwrIiLzKMoA5CeATWa20czSwA5gT9U+e4BftLJrgXPufiLisSIiMo/qZvTuXjCzO4CHKQ+RvMfdnzWz24L6XcBeykMrBygPr/zEdMfOy5mIiEhNujJWRGQRmG4c/eK8dlxERCYp0IuILHIK9CIii5wCvYjIIteSP8aa2SDw43l46l7g1Dw870KJe/sh/ueg9jdf3M9hvtp/ubv31apoyUA/X8xs31S/SsdB3NsP8T8Htb/54n4OzWi/um5ERBY5BXoRkUVuqQX63c1uwBzFvf0Q/3NQ+5sv7uew4O1fUn30IiJL0VLL6EVElhwFehGRRW7RB3oz+6yZPW1m+83sETO7tKLut8xswMwOm9nPN7Od0zGz3zez54PzeNDMLqqoa/lzMLOPmtmzZlYys/6qupZvP5QXuQ/aOGBmdza7PVGY2T1mdtLMDlaUrTSzb5nZC8H9ima2cTpmts7M/t7MDgXvn18NyuN0Du1m9riZHQjO4XeC8oU9h/K6p4v3BvRUbP9HYFewvRk4AGSAjcA/A8lmt3eKc/ggkAq2fw/4vTidA3Al8GbgH4D+ivK4tD8ZtO0NlBfTOQBsbna7IrT7vcA1wMGKsv8F3Bls3xm+l1rxBqwBrgm2u4EfBe+ZOJ2DAV3BdhvwA+DahT6HRZ/Ru/tQxcNOzi9luB24391z7v4i5bn0ty50+6Jw90fcvRA8fIzySl0Qk3Nw90PufrhGVSzaT7lNA+5+xN3zQLjIfUtz90eBM1XF24EvBdtfAv7lQrZpJtz9hLs/FWwPA4cor0Mdp3Nwd88GD9uCm7PA57DoAz2Amf2umR0FPgZ8JiieakHzVvfvgG8E23E9h1Bc2h+Xdkax2survxHcr2pyeyIxsw3AT1POiGN1DmaWNLP9wEngW+6+4OewKAK9mf2dmR2scdsO4O6fcvd1wJeBO8LDajxV08aa1juHYJ9PAQXK5wEtdA5R2l/rsBplrTjeNy7tXJTMrAv4KvBrVd/QY8Hdi+5+NeVv4lvN7K0L3YYoi4O3PHd/f8RdvwJ8HbiLaIueL5h652BmvwTcBPwLDzr2aKFzmMH/QaWWaX8dcWlnFK+a2Rp3P2FmayhnmS3LzNooB/kvu/sDQXGsziHk7mfN7B+AbSzwOSyKjH46Zrap4uGHgeeD7T3ADjPLmNlGYBPw+EK3Lwoz2wb8JvBhdx+tqIrNOUwhLu1fTIvc7wF+Kdj+JeBrTWzLtMzMgD8DDrn75yuq4nQOfeEoOTNbBryfcgxa2HNo9q/SC/Cr91eBg8DTwEPA2oq6T1EeTXEYuKHZbZ3mHAYo9xHvD2674nQOwEcoZ8U54FXg4Ti1P2jnjZRHffwz8Klmtydim+8DTgATwb//J4GLgW8DLwT3K5vdzmna/27KXWRPV7z3b4zZOVwF/DA4h4PAZ4LyBT0HTYEgIrLILfquGxGRpU6BXkRkkVOgFxFZ5BToRUQWOQV6EZFFToFeRGSRU6AXEVnk/j+0/JgE6cOJggAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# define frequency var\n", "omega = 2*np.pi*np.linspace(-5*alpha, 5*alpha, 101)\n", "\n", "# compute FT of signal\n", "def x_ft(omega_arr, alpha_var):\n", " ans_arr = np.zeros(len(omega_arr))\n", " for i in range(len(omega_arr)):\n", " ans_arr[i] = 2*alpha_var/(alpha_var**2 + omega_arr[i]**2)\n", " return ans_arr\n", "\n", "# plot FT of signal\n", "fig_ft = plt.figure()\n", "ax_ft = fig_ft.add_subplot(1, 1, 1)\n", "ax_ft.plot(omega, x_ft(omega, alpha));" ] }, { "cell_type": "markdown", "id": "ebc2c165", "metadata": {}, "source": [ "## Discrete Time Fourier Transform of Signal" ] }, { "cell_type": "code", "execution_count": 24, "id": "e7913822", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmS0lEQVR4nO3de5RddZUn8O++77r31k2qqEqq8iCBPCAPg2CBKD66RTQIQjvLmdEeaZu2Fy3T2jij46NdvXq616yla7p1dGx7phlQbKV1ZiEqILaiogJqJDwCJJWEkAB5VFK38rzvx7l7/jj33EoqVfd1zrm3zq3vZ8nKq6zzq+R3du2zz2//fqKqICIi7/F1ewBERNQeBnAiIo9iACci8igGcCIij2IAJyLyqEAnLzY0NKSrV6/u5CWJiDzvqaeemlLV4Zm/39EAvnr1amzfvr2TlyQi8jwReWW232cJhYjIoxjAiYg8igGciMijGMCJiDyKAZyIyKMYwImIPKphABeRr4nIpIi8cNbvDYrIIyLyYvXHAXeHSUREMzWTgd8DYOuM3/s0gJ+p6joAP6v+2jU/Gz+Gf/zFPjcvQQvY6VwJP3j2cLeHQT3q6Ok8vvCTPdifTDv+uRsGcFX9FYATM377ZgDfqP78GwD+wNlhneuxF6fwT7/c7+YlaAF7cMcR3PGdZ3H0dL7bQ6EedPBkFl/5+T4cOeX8/Gq3Br5UVScAoPrjkrk+UERuE5HtIrI9mUy2dbF4OIB0oQwePkFuOJ0rAQDO5EtdHgn1onS+DACIR5xvfHf9Jaaq3qmqY6o6Njx8Xit/U2LhAIyKIl+qODw6IiBTMG+wdPVHIielqvMqHvY7/rnbDeDHRGQUAKo/Tjo3pPNZ37lSBWZI5DwrcFuZEpGTahl4OOj45243gD8A4IPVn38QwA+cGc7s+sNmAM8UDDcvQwuUdYMxAyc3WE94XSmhiMi3AfwGwCUickhEPgTg8wCuE5EXAVxX/bVr4tUAzgyJ3JBiBk4uShXKEAGiQedLKA2/Jajq++f4o2sdHsucWEIhN1mBO8UMnFyQzpcRDwXg84njn9sTnZjMwMlNrIGTm9KFkivlE8BrAZwZErnAqlFmipxf5Lx0oYxYeCEH8AgDOLnHKp2kmIGTC1L5ci0JdZo3AjgzcHIRV6GQmzKFMvoXcgklHPAh6BfWKMlxZaOCXMlcnppmJya5IF1Y4Bm4iNTa6YmcdHZvAecXuSG90EsogNlOzwycnJY+68Ula+DkhtRCf4kJmHVwrtMlp1lJQTjgYwZOjlNVpBd6DRwA+iPMwMl56Wpz2OiiSG05IZFTskUDqmAJhTVwcoNVNhlZFOGWxeS4tIv7oABeCuCRIDMkcpx1g40u6kPJUBTK3LKYnFML4MzAWQMn56XPysABrkQhZ1nza8HXwONhP2vg5DgrYI8kqgGcc4wcZM2vWGjBB/AgciUDZYOPuOQc6wZbmgif82siJ6RcPE4N8FIAj/BQB3JeOl9GNORHos88LYVrwclJVkLQ78JpPICHArh1Kg/3BCcnWW3O1g3GF+XkJGt7BmbgzMDJBalCGfFIgDtekisyRTNexVw40BjwUgCv7UjIDJyck86X0R8O1OYXVzqRk1L5MkIBH8KBBR7Arb0EWKMkJ2WsDJynPpEL0oWSa2vAAQ8F8H4+4pILrBp4JOiD3yd8wiNHubkTIeChAM4MidyQyps7xdW2LOb8Ige5uRc44KUAzgycXJAulGsrnMz9dviSnJyTypddW4ECeCiAW51MDODkFGurT+sG648EWEIhR2WK0wmCGzwTwP0+QSzEdnpyTr5UgVFRxKtrwLnjJTktzQx8Wow3GDlo5lafPPWJnJZ28TQewGMBPB7hjoTknOk252oNnPOLHJbKs4RS088MiRxkzSUrQ+L8IicVyxUUyhWuQrHEIyyhkHOsfXXi56xC4fwiZ2QK7u5ECHgtgDNDIgfN3Gw/HgkgWzRgVHisGtnn9mk8gMcCOF9ikpNm3mDWj5ki5xjZxwA+Qz8DODlo5iMuu33JSW4faAzYDOAi8p9EZKeIvCAi3xaRiFMDm41VA+fJ4eSE1MwMnN2+5CArEZiXGbiILAfwFwDGVHUzAD+A9zk1sNnEw0EYFUW+xGPVyL50voygXxAOmLdBbUtZZuDkACtBcOtAY8B+CSUAoE9EAgCiAI7YH9LcrAyJp/KQE6wmCxEBwB0vyVnTGbg7x6kBNgK4qh4G8PcAXgUwAeC0qv5k5seJyG0isl1EtieTyfZHiumGC9YoyQkzt/qM81g1cpC1r868rIGLyACAmwFcBGAZgJiIfGDmx6nqnao6pqpjw8PD7Y8U0w0XPFaNnJCasdWndewVEwRygrWzZTTozmk8gL0SytsBHFDVpKqWANwP4I3ODGt208desYRC9mUK5XPqk9bBxmynJydYT3g+n7h2DTsB/FUAV4tIVMwi4rUAxp0Z1uxqNUpmSOSAmZvtMwMnJ7l9nBpgrwa+DcB9AJ4G8Hz1c93p0LhmNX2wMW8wss/c6nP6BVPA70Nf0M89wckRZ+817xZbn11V/xrAXzs0loa4TpecZNbAz61Pcr8dckrK5fMwAY91YnKdLjlptgNn+8MBzi9yRHrGOxY3eCqAhwM+BHzCZV5kW9moIFcyzlujGwsHOL/IEZlCuXYUpFs8FcBFhI+45IhM0VziNbNGyS1lySluH6cGeCyAA9xSlpwx8zQeSzzCEgo5Y2afgRs8GcC5TpfsqrU5R86vgTMDJ7tUlTXw2fRHmIGTfekZp/FYWKIjJ2SLBlTd3YkQ8GAA56EO5ITUjPMwLdbJ9NyymOywYpSbJ9IDHgzgfMlETkjPsdVnPBxAuaIolLllMbUvlZ99fjnNcwG8n4+45IDMjMMcLNxSlpww1/xymucCeDwcQCrPVmeyZ64SCpvFyAksocwhGgogX6rw5HCyJVtdBx4LndtKH602XmR5sDHZwAx8DtaOcbkS9wSn9mWKZbOz13/uLWDNLyvAE7XDmj/RkHt7gQMeDOC1DIk1SrIhWzBmfby15hfb6cmOTJEllFlZGVKGGRLZkCmWZ82OmIGTE7IFZuCzYoZETsgWjFk3GopxfpEDrAw8ys2szhWrvWRihkTtyxTLiIbPz46sjInzi+zIFg1Egj74XTxODfBgAI/WHnGZIVH7ckVj1sfbKBMEckC26P5WsoAXAzgzJHJApmjM+ngbCfogwgSB7MkWDPS5XP8GPBjAWaMkJ5gZ0vk3mIggFgogU2CCQO3LMAOfHTNwckKmYCA6xxKvaMjPDJxsyRaNWd+xOM1zAdxaV5nhDUY2zJWBA9Vj1ZggkA2dOE4N8GAADwd88Mn0OkuiVlUqamZIc9xg0ZCfjWJkS3aOl+RO81wAr9UomYFTm6xtGGJzPOJyfpFdmWLZ9S5MwIMBHDCXEjIDp3Y1arKIhv18x0K2ZAvMwOfEDInssL75183AWUIhG5iB18EMieywvvn3BWe/wfpCnF/UPqOiyJcqzMDnEg0FuMyL2pYrNsrAGcCpfbV3LFyFMrsobzCyIVPbq3muGjgTBGqftYKJnZhzYI2S7MjWjruaOwMvGYoiDzamNmQaPOE5yZMBnBk42VG7weZcB85j1ah9VnLp9laygM0ALiKLReQ+EdktIuMi8ganBlZPLMwMnNqXrS0jnKsTk4eGUPuyDRIEJ9m9wpcB/KuqvldEQgCiDoypISsDV1WIuLvfLvWeTG0ZYYMMnEkCtaHWZ9CBEkrbAVxEEgDeAuCPAUBViwCKzgyrvlg4gHJFUTQqCAfc/0ui3pItluETc1uG2TADJztqfQbzvIRyMYAkgK+LyDMicpeIxBwaV121HQnZjUltyFSPU5vr6Y0ZONmRaVCic5KdAB4AcAWA/6WqlwPIAPj0zA8SkdtEZLuIbE8mkzYuN622JzhfMlEbssVy3SVe1o3HDJzaMb3KaX5n4IcAHFLVbdVf3wczoJ9DVe9U1TFVHRseHrZxuWlWbSnHG4zakC0adW8urkIhO7KlzpxID9gI4Kp6FMBBEbmk+lvXAtjlyKgamM7AGcCpddliue7NFQvz0BBqX7ZgwO+TOd+xOMlujv9RAPdWV6DsB3Cr/SE11lergTNDotZZNfC5RHlsH9mQKZYRDfo7skLOVgBX1WcBjDkzlOYxAyc7ssUyBmKhOf+cx/aRHdlCZ45TA7zaiVl7xGWGRK3LFOtn4EG/D6GAjy/JqS2dOtAY8GgAnz6ZnhkStS5bqF8DB6o7EnJ+URs6daAx4NEAzgyc7Mg0WIUCmHVwZuDUjkyh3JF9UACvBvBgdZ0uMyRqQ6N14IB1sDHnF7UuWzQQ68ASQsCjATzg9yEc8DEDp5YVyxWUDG14g0XDzMCpPZliGdEONPEAHg3ggNnlxFUC1Kpcg8McLLGQn41i1JYcM/DGoiE/MyRqmTVnGm22b9bAGcCpdayBNyEWCrBGSS2b3gu8QQYe9rNERy1T1epWDczA64qGmYFT66b3Am8iA2eCQC0qGhWUK8oMvBEeq0btyDSbgYeYgVPrrKpAJzayAjwdwHmsGrWu2c32o9WX5JWKdmJY1CNq71iYgdcXYwZObWj2uCtrFUGuxDlGzbNiEjsxGzAzJGbg1JraDdZEIw/AQ0OoNVZVgBl4A7GQny+ZqGXWDdaoBj59rBrnGDWv2QTBKZ4N4NFQALkSa5TUmmZvsOmDjZmBU/MyHTxODfBwALduMNYoqRXZooFQwIegv/7UtzJwdmNSK3IdPE4N8HAAj/JgY2pDtlhuqs15OgNnAKfmTfcZMAOvq3ZuIWuU1IJMwWiqyWK6Bs4EgZo33enLDLwuZuDUjmyx3FSbM4/to3ZkCs1tluYUDwdwnltIrcsUm8zAeWgItSFbLCMc8MHvc/9AY8DTAZwnh1PrsoUWM3CW6KgFmWK5Y/VvwMMBvFYDZwZOLcgUDfQFG99gkaAPIszAqTXZgtGx+jfg5QDODJza0GwNXEQQDbJZjFrTyRPpAQ8HcNbAqR3NrkIBuF0Dta6TJ9IDHg7gVp2JAZxakWtyHTjADdOodeaBxszAGwoHfPCxRkktqFQU2ZLR9IGz0RAzcGqNeZwaM/CGRAQxnppCLciXDaii+Qw8zBo4tcY8To0ZeFOiPLeQWlBrsmAGTi7JFpmBNy3Gk8OpBdnaaSktZOCcX9SCTIEZeNP6Qn7uVUFNa7XNORoKcH5R04yKIlcy0BdkBt4UMwPnDUbNaXWjoWiIGTg1z9pKtpk+A6fYDuAi4heRZ0TkIScG1AqzBs4bjJpjBeNmbzDWwKkV2SZPe3KSExn4HQDGHfg8LYvxZHpqQas3WCzkR8lQFMsVN4dFPaLVBMEJtgK4iKwAcAOAu5wZTmuiIT9PTKGmWU9rzTZaWKtVOMeoGdMlOu9k4F8C8EkAc6YoInKbiGwXke3JZNLm5c4VC3MVCjWvdoM1mSHFeDI9taDVBMEJbQdwEbkRwKSqPlXv41T1TlUdU9Wx4eHhdi83q2iI68CpeZk2M3DOMWqGVc71yl4o1wC4SUReBvAdAG8TkW85MqomJfqCKBnKOjg15VS2hKBfEAk2N+0TkUDt/0fUyOmcOU8SkWDHrtl2AFfVz6jqClVdDeB9AH6uqh9wbGRNGIqHAQBT6UInL0seNZUuYCgehkhzp6VwflErkilzngxX500neHod+FA8BIA3GDXHCuDNGu43PzaZLro1JOohU+kiQn4fEn2dq4E7ciVV/QWAXzjxuVpRu8FSDODUWDJVwNJEpOmPH4yFIML5Rc1JpgoYioeafsJzgqczcOtRhRkSNcPMwENNf3zQ78NANMQnPGrKVLqAof7OlU8AjwdwK0OaYoZEDVQqiuPpYkslFMAs03F+UTNaLdE5wdMBPFDNkJLMkKiBU7kSyhWtld2aNdwf5vyiplgllE7ydAAHzDIKMyRqxCqDtJ6Bh1lCoYYqFcXxTLHlBMEuzwfwoX7WKKkx65t8WwE8VYSqujEs6hGnciUYFWUJpVVDcT7iUmPWHGmnhJIrGdyygepKtpkg2NUTAXwqxVUoVF+7TRa1Zh6W6aiOdkt0dnk+gNcyJLbTUx3tNlmwWYyaMdXmE55dng/gbHemZkylC7igjSYLzi9qRjfa6IGeCOBmhsRuOaonmSq0lR0tYbcvNSGZLnS8jR7ogQBu3ZTMkKiedpssau307PalOqZSxY630QO9EMDZTk9NaLWN3hJgOz01oRtt9EAPBHBuOESNVCqKqXT7TRbD8TDnF9VldmEygLeMGRI1YrfJgs1i1Ei7T3h2eT6AA2ynp/rsrtFlOz3V0602eqBHAjgzJKrH+uZup4TCdnqaS7fa6IFeCeBsp6c6knYzcLbTUx3daqMHeiSAD7Odnuqw22TBdnqqp1tdmECPBPAhttNTHXbPKmSvAdXTrX1QgF4J4HF2y9Hc7J5VyG5fqqdbbfRAzwRwbjhEc7PbZDHM/VCojm610QM9EsD5iEv12D2rkO30VE+32uiBXgngLKFQHclUwdbjbcDvw2A0xPlFs0p2qY0e6JEAzgyJ5mI1WQz12+uSYzMPzWWqS230QI8EcCtD4g1GMznVZMFmMZrLVNreE54dPRHAAetoNd5gdC6n1ugOMwOnWTj1hNeu3gng/SF2Y9J5nOqSG6ruSMh2ejrbyWyxa230QC8FcGZINAunmiyG+sPIlypsp6dzTFXfuzGA28QNh2g2SZsbWVmG2U5Ps+hmGz3QQwF8ScJspz+TYzs9TTt6Oo9QwIdExF6TxZKEeYNOnM47MSzqEdZ8YAC3ad3SfgDA7qNnujwSmk/2HEth/dK47SaLdUvM+bWH84vOsufoGYQCPqwajHbl+m0HcBFZKSKPisi4iOwUkTucHFirNo4mAADjE7zBaNr4xBlsGEnY/jxLE2EMRIMYn0g5MCrqFeMTKVyytB8Bf3dyYTtXLQP4uKpuAHA1gD8XkY3ODKt1S/rDGIyFeINRzWQqj6l0ERtG7QdwEcGG0QTGmYFTlaqaCcJof9fG0HYAV9UJVX26+vMUgHEAy50aWKvMG6yfNxjVWN/MnQjg1ufZczSFslFx5PORtyVTBRzPOJMgtMuRvF9EVgO4HMC2Wf7sNhHZLiLbk8mkE5eb04YR3mA0zSqnbXQwgBfKFbx8POPI5yNv21WdX54O4CISB/BdAB9T1fPSX1W9U1XHVHVseHjY7uXq2rjMvMEOTPEGI2DXkTNYvrgPi6JBRz6f9Y1g5xE+5VEPBHARCcIM3veq6v3ODKl91l/kLr7IJMDx+uTaJXEE/cL3LATALNEtX9yHRX3OJAjtsLMKRQDcDWBcVb/o3JDat2aYNxiZ8iUD+6cyjmZHoYAPa4bjXOlEAKwEoXvZN2AvA78GwC0A3iYiz1b/e5dD42pLKODD2iX9vMEILx5Lw6io4zfYxtEE5xeZCUIyjY1dXIECAG23p6nq4wA6fwRFAxtG+/HYi1PdHgZ12a6J0wCcr09uGE3g/mcO2z7lh7xtz9EUKtrd+jfQQ52Ylo2jCSRTBW5stcCNT6QQDfkd75DbuIwNY3TWCqdlDOCOYkcmAeaL7EtH+uHzOfuQuIHzi2D++8dCfqwc6E4LvaXnAjhvMJrukHM+OxqMhbA0EeaL8gVufCKFS0cTjicIreq5AD4QC2EkEeENtoAdPpVDKl92rT65gS8yF7T50EJv6bkADpgvMnex2WLBsv7t3Qzg+ybTKJR5uMNCdOhkDqmCewlCK3oygG9clsBLyTTyJd5gC9H4RAoiwKUj7mRIG0cTKFcULx5Lu/L5aX7b5fAWDXb0ZAAfWzWIckXxxD4uJ1yIHt0ziY2jCcTC9g5xmMvY6gEAwC/2TLry+Wl++8WeSURDfmbgbrlm7RAW9QXx0HMT3R4KddjBE1k8e/AUbtyyzLVrjC7qw9iqAc6vBahkVPCjF47iuo1LEQn6uz2c3gzgoYAP128ewU92HmUZZYGxguqNW0Zdvc67L1uG3UdT2HuML8sXksf3TeFUtoR3u5ggtKInAzgA3LhlGTJFA4/u5mPuQvLgjiO4/MLFWOnyEVfXv2YEPgEe2nHE1evQ/PLgjiPojwTw5vVD3R4KgB4O4FdfPIiheIiPuQvIS8k0dk2ccbV8YlnSH8HVF1+Ah56bgKq6fj3qvnzJwCM7j2HrphGEA90vnwA9HMADfh+u3zyKn+0+hkyBJ9UvBA/tmIAIcMNr3C2fWG7csgz7pzLcH3yB+OXeJFKFMm68bH6UT4AeDuCAWafMlyr46fixbg+FXKaqeGDHYVy1ehAjiyIduebWzSMI+IRPeQvEQ89NYDAWwhvXXNDtodT0dAAfWzWAkUQED+7gDdbrdh9N4aVkBu/uYHY0GAvhTeuG8OCOIyyj9LhssYyf7jqG6zePINilE+hnM39G4gKfT3DDllH8cu8kjnN3wp72vWcOw+8TXL95pKPXvXHLMhw+lcOTL5/s6HWps3688yhyJaMj71da0dMBHADef9WFqCjwhUf2dnso5JJDJ7P4xq9fxvWbR3BBh/fo3rp5BEPxMD7/o3Fm4T0qXzLwxUf2Yv3SOK66aLDbwzlHzwfwtUvi+KM3rMK3f/cqdh453e3hkAs+9/BuiACfedeGjl87Hg7gk1svwdOvnsL3nz3c8euT++56bD8Onsjhv757E/xd3n1wpp4P4ADwsbevx0A0hL95YBezpB7zm5eO44fPT+D2t67F8sV9XRnDe69YgctWLMLnHt6NNFc89ZSJ0zl89dGXsHXTCN64dn6s/T7bggjgi/qC+MQ7LsHvXj6BB7lioGeUjQr+5sGdWL64D3/21ou7Ng6fT/DXN23CZKqArz66r2vjIOd97uHdMFTx2Rs6/3TXjAURwAHg31+5EpuWJfC5h8dxJl/q9nDIAd/87SvYfTSFz96woev7Ulxx4QD+zRXLcfdjB7BvkrsU9oLfvHQcD+w4gg+/5WLXO3vbtWACuN8n+NubN2MqXcCffmM790jxuJ/vPob/9sNxvHX9cMdXnszl01svRTwSwB9//Xc4dibf7eGQDXuPpXD7vU9h9QVRfPj31nR7OHNaMAEcAF63agBf+HevxZMvn8BH/uVplIxKt4dEbfjdgRO4/VtPY+NoAv/wh5dDZH68WFqSiOCeW6/EyUwRt9y9DaeyxW4Pidpw8EQWt9y9DSG/D9/80OsRDbmzLbETFlQAB4CbLluGv715M346PolP3fccjApfanrJC4dP40P3PInlA32459Yr0R8JdntI59iyYjH+zx+N4eWpLG6950m+1PSYyVQet9y9DbmigX/+0FXztnRiWXABHABuuXoVPn7detz/zGH8h7t+i4nTuW4PiRpQVfzfJ1/Fv/3fv0F/JIBvfuj1HV/z3aw3rh3CV/7wcuw4eAo3feVxvHCYy1e94Il9U7jxfz6OY2cK+PqtV+LSke4f2NDIggzgAPCRt63F3713C547dBrXf/kx/Hjn0W4PieZwOlfCR/7lGXzqu8/jtSsX4/7/eE3Xlgw2652bRvCtP309MsUy3vOPT+Cux/ajwqe9ealkVPD5H+3GB+7ehv5IAPfd/ga8btX8atiZi3RyXfTY2Jhu3769Y9drxv5kGnd851k8f/g03rJ+GB97+zpcceFAt4dFMPef+OffvII7f7UfZ3Il/Od3rMefvWXNvGumqOdkpohPfvc5PLLrGDaOJvCxt6/DdRuXzpu6/UJWNir4/rNH8JWfv4hXjmfx/qsuxF/duGFe1rxF5ClVHTvv9xd6AAeAYrmCrz9xAP/0q/04kSnireuHccvVq/DWS4bn1cY1C8Whk1l87+nDuOfXL+N49d/jv7zzEmxevqjbQ2uLquIHzx7Bl366Fy8fz2LTsgT+5JqLsHXziGvndtLcTmaKeOj5CXzt8QM4MJXBpmUJfOIdl+D3L13S7aHNiQG8CZmCmfHd9dh+HM8UMRgL4d1bRnHthqW46qLBrq817mWvHs/iVy8m8eCOI9h24AQA4C3rh3HHtevwulW98URkZXxffXQfDkxl0Bf0452blmLr5hG8YY15jiu5YypdwBP7pvDD5ybw6J5JlAzFpmUJ/MW16/AODzwRMYC3oGRU8Ku9Sdz/zGE8susYiuUKQgEfrlo9iCtWDWDL8kXYsnIRlvR3Zt/pXlMyKthzNIXnDp3Gc4dO4dcvHcerJ7IAgIuHYnjP5cvxB5cvn/crANqlqnjqlZO4/5nDeGjHEZzJl+ETcwXLVRcNYsuKRdiyfDFWDvbN+8AyH1Uqiv1TGTx/+BR2HDyNbQdOYHzCPHRjuD+Mmy9bhvdcsRwbRxOe+ftlAG9TtljGtgMn8PiLU3hi3xT2HkvBehc1GAthzXAMa5fEseqCGFYM9GHFQBQjiQiG4iEEFnD5JV0o49iZPA6fzOHQyRwOnsxifzKNl5IZvDyVQbn6l7g4GsTYqkG8ed0Q3rRuCBcPxTxzUzmhZFTw7MFTeKw6v54/dBrFan9CPBzAmuEY1iyJ46ILYlgxaM6v0UURDPeH582xXt2QLxmYPFPA4VM5HDqZxaGTORyYymDfZBr7p9LIl8y/w76gH69duRhvWjeEN68bwqZlizz1DsXCAO6QbLGMnUfO4LlDp7FvMoV9k2nsm0zjZPbc9nwR4IJYGEPxEAZj5n+Lo0EkIkEs6guiPxJELOxHfySAaCiAvqAf0ZAfkaAf4aAP4YAf4YAPIb8Pvg5NOFWFUVEUjQrypQoKZQP5UgW5ooFcqYxs0UCmUEa6YCCdL+FMvozTuRJO50o4lS3ieKaIE5kikqkCssVzO10DPsGFF0SxdjiONUvi2DiawGUrmGXOVCxXsPdYCjsOncLe6iEV+ybTODpLZ+dANIihePis+RVCoi9Qm1/94QBi4QBiYX91fpnzLBz0IRIwfwz6fR0NaEZFUSxPz61C2UCuZCBbNJCrza8yMoVybX6dyZVwMmvOreOZIqZSBZzJn7u+XgRYtqgPa5fEsXZJHJeM9OOyFYuxdknckwF7JlcCuIhsBfBlAH4Ad6nq5+t9fC8E8Lmk8iUcPpXDwRM5HDuTx+SZPCZTBUyli7XJZwW7VpuHAj5B0O9DwC8I+AQBvw9+Efh95n8+AXwigPm/WkC0/m0VgCpQUUVFFYahKFfMn5cMRdmooFwN3K1Oh2jIj0QkiIFYCBfEQhiIhTAcD2NpIowliTCWLerDysEoliYiPXEjdUu+ZFTnVxZHT5tz69iZPI6nizhRnV+nsmawK7bYYez3CYJ+QdDng98vCPh8CFhzywf4RZqaX6oKQxWVClCuVGBUzHlWNhQlo4KSUUGrKynDAR8SfUEMRkMYiAUxGAthKB7G0oT5FGLOrz6MLupDKNC7T7xzBfC2X4GLiB/AVwFcB+AQgCdF5AFV3dX+ML2rPxLEpSPBhov/VRWZooF03sw00oUyssUyckUzC8mXDBTKlep/BorlSnXymzdB2dDazWFUAKNSgQKoVAM0qjeIQiHWHQfrJjRvPr/P/Ebg8wmC1W8IAb8g7PchFDCzskjQfAIIB33oC/rRFwogGvIjFgogXs3q+iPBnr5p5pNI0I81w3GsGY7X/ThVRb5UQSpfqmayBjJnza9cyUChbKBQMudYyaicM8fKFfPHSmX6m7z5X/355ZPpRMLvEzPB8Jvzy+/zIeiX2twKBXzm3Ko+ZfaF/OgL+REN+hELW/MrgP5IgAsHGrCzhukqAPtUdT8AiMh3ANwMYEEG8GaJCOLVSUrkNBGpBcT5uyiOnGInfVoO4OBZvz5U/b1ziMhtIrJdRLYnk0kblyMiorPZCeCzFTTPq3Cp6p2qOqaqY8PDwzYuR0REZ7MTwA8BWHnWr1cAOGJvOERE1Cw7AfxJAOtE5CIRCQF4H4AHnBkWERE10vabNFUti8hHAPwY5jLCr6nqTsdGRkREddlaCqGqDwN42KGxEBFRC7iIl4jIoxjAiYg8qqN7oYhIEsArLnzqIQBTLnzeTvH6+AHvfw1eHz/g/a/B6+MH3PsaVqnqeeuwOxrA3SIi22fbJ8ArvD5+wPtfg9fHD3j/a/D6+IHOfw0soRAReRQDOBGRR/VKAL+z2wOwyevjB7z/NXh9/ID3vwavjx/o8NfQEzVwIqKFqFcycCKiBYcBnIjIo3oqgIvIR0Vkj4jsFJH/3u3xtENEPiEiKiJD3R5Lq0Tk70Rkt4g8JyLfE5HF3R5TM0Rka3Xe7BORT3d7PK0QkZUi8qiIjFfn/R3dHlM7RMQvIs+IyEPdHks7RGSxiNxXnf/jIvKGTly3ZwK4iPw+zBOBtqjqJgB/3+UhtUxEVsI8ou7Vbo+lTY8A2KyqWwDsBfCZLo+nobOOBrwewEYA7xeRjd0dVUvKAD6uqhsAXA3gzz02fssdAMa7PQgbvgzgX1X1UgCXoUNfS88EcAC3A/i8qhYAQFUnuzyedvwPAJ/ELAdjeIGq/kRVrePCfwtzj/j5rnY0oKoWAVhHA3qCqk6o6tPVn6dgBo7zTsaaz0RkBYAbANzV7bG0Q0QSAN4C4G4AUNWiqp7qxLV7KYCvB/BmEdkmIr8UkSu7PaBWiMhNAA6r6o5uj8UhfwLgR90eRBOaOhrQC0RkNYDLAWzr8lBa9SWYiUuly+No18UAkgC+Xi0D3SUisU5c2FMn64rITwGMzPJHn4X5tQzAfIy8EsD/E5GLdR6tk2ww/r8E8I7Ojqh19b4GVf1B9WM+C/PR/t5Ojq1NTR0NON+JSBzAdwF8TFXPdHs8zRKRGwFMqupTIvJ7XR5OuwIArgDwUVXdJiJfBvBpAH/ViQt7hqq+fa4/E5HbAdxfDdi/E5EKzI1l5s1JynONX0ReA+AiADtEBDBLD0+LyFWqerSDQ2yo3r8BAIjIBwHcCODa+fTNsw7PHw0oIkGYwfteVb2/2+Np0TUAbhKRdwGIAEiIyLdU9QNdHlcrDgE4pKrWk899MAO463qphPJ9AG8DABFZDyAEj+xspqrPq+oSVV2tqqthTogr5lvwbkREtgL4FICbVDXb7fE0ydNHA4r5Hf9uAOOq+sVuj6dVqvoZVV1RnffvA/BzjwVvVO/TgyJySfW3rgWwqxPX9lQG3sDXAHxNRF4AUATwQY9kgL3kHwCEATxSfZL4rap+uLtDqq8Hjga8BsAtAJ4XkWerv/eX1dOyqHM+CuDeahKwH8CtnbgoW+mJiDyql0ooREQLCgM4EZFHMYATEXkUAzgRkUcxgBMReRQDOBGRRzGAExF51P8H5XKeVq+f8hAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# define sampling time and frequency angle\n", "T = 1/(5*alpha)\n", "theta = omega*T\n", "\n", "# compute DTFT of signal\n", "def x_dtft(theta_arr, alpha_var, T_var):\n", " ans_arr = np.zeros(len(theta_arr))\n", " const = np.exp(-alpha_var*T_var)\n", " for i in range(len(theta_arr)):\n", " ans_arr[i] = (1-const**2)/(1+const**2-2*const*np.cos(theta_arr[i]))\n", " return ans_arr\n", "\n", "# plot DTFT of signal\n", "fig_dtft = plt.figure()\n", "ax_dtft = fig_dtft.add_subplot(1, 1, 1)\n", "ax_dtft.plot(theta, x_dtft(theta, alpha, T));" ] }, { "cell_type": "code", "execution_count": null, "id": "b6145434", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }